Vandermonde Polynomial Approximation
Degree of approximation Polynomial:
Approximation Points
i
i
i
x
i
x_i
x
i
y
i
y_i
y
i
0
0
0
Remove
1
1
1
Remove
2
2
2
Remove
3
3
3
Remove
4
4
4
Remove
i
i
i
Add
Refresh
(
[
1
1
1
1
1
−
10
−
4
0
6
10
100
16
0
36
100
−
1000
−
64
0
216
1000
]
T
[
1
−
10
100
−
1000
1
−
4
16
−
64
1
0
0
0
1
6
36
216
1
10
100
1000
]
)
−
1
[
1
1
1
1
1
−
10
−
4
0
6
10
100
16
0
36
100
−
1000
−
64
0
216
1000
]
T
⋅
[
−
2
−
8
−
3
8
−
6
]
=
[
−
1.0526486837829054
2.3934622467771645
−
0.026169970750731224
−
0.02584768714115481
]
\left(\begin{bmatrix}1 & 1 & 1 & 1 & 1 \\ -10 & -4 & 0 & 6 & 10 \\ 100 & 16 & 0 & 36 & 100 \\ -1000 & -64 & 0 & 216 & 1000\end{bmatrix}^T\begin{bmatrix}1 & -10 & 100 & -1000 \\ 1 & -4 & 16 & -64 \\ 1 & 0 & 0 & 0 \\ 1 & 6 & 36 & 216 \\ 1 & 10 & 100 & 1000\end{bmatrix}\right)^{-1} \begin{bmatrix}1 & 1 & 1 & 1 & 1 \\ -10 & -4 & 0 & 6 & 10 \\ 100 & 16 & 0 & 36 & 100 \\ -1000 & -64 & 0 & 216 & 1000\end{bmatrix}^T \cdot{} \begin{bmatrix}-2\\-8\\-3\\8\\-6\end{bmatrix} = \begin{bmatrix}-1.0526486837829054\\2.3934622467771645\\-0.026169970750731224\\-0.02584768714115481\end{bmatrix}
1
−
10
100
−
1000
1
−
4
16
−
64
1
0
0
0
1
6
36
216
1
10
100
1000
T
1
1
1
1
1
−
10
−
4
0
6
10
100
16
0
36
100
−
1000
−
64
0
216
1000
−
1
1
−
10
100
−
1000
1
−
4
16
−
64
1
0
0
0
1
6
36
216
1
10
100
1000
T
⋅
−
2
−
8
−
3
8
−
6
=
−
1.0526486837829054
2.3934622467771645
−
0.026169970750731224
−
0.02584768714115481
References:
Least squares
Vandermonde matrix