Lagrange Polynomial Interpolation

The goal of Lagrange interpolation is to find the polynomial pPnp \in P_n for n+1n+1 interpolation points x0,,xnRx_0, \dots, x_n \in \R and associated values y0,,ynRy_0, \dots, y_n \in \R so that: p(xi)=yifor i=0,,np(x_i) = y_i \quad{} \text{for } i=0, \dots , n. For the constuction, Lagrange basis functions are used: Li(n)(x):=j=0,jinxxjxixjPn,i=0,nL^{(n)}_i(x) := \prod_{\substack{j=0, j \neq i}}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, \dots{} n. With this the interpolation polynomial can be constructed: p:=i=0nyiLi(n)Pnp := \sum^{n}_{i=0} y_i L^{(n)}_i \in P_n.

Interpolation Points

iixix_iyiy_i
00
11
22
33
44
ii